CYP17 inhibitors for prostate cancer therapy.
نویسندگان
چکیده
Prostate cancer (PC) is now the second most prevalent cause of death in men in the USA and Europe. At present, the major treatment options include surgical or medical castration. These strategies cause ablation of the production of testosterone (T), dihydrotestosterone (DHT) and related androgens by the testes. However, because these procedures do not affect adrenal, prostate and other tissues' androgen production, they are often combined with androgen receptor antagonists to block their action. Indeed, recent studies have unequivocally established that in castration-resistant prostate cancer (CRPC) many androgen-regulated genes become re-expressed and tissue androgen levels increase despite low serum levels. Clearly, inhibition of the key enzyme which catalyzes the biosynthesis of androgens from pregnane precursors, 17α-hydroxy/17,20-lyase (hereafter referred to as CYP17) could prevent androgen production from all sources. Thus, total ablation of androgen production by potent CYP17 inhibitors may provide effective treatment of prostate cancer patients. This review highlights the role of androgen biosynthesis in the progression of prostate cancer and the impact of CYP17 inhibitors, such as ketoconazole, abiraterone acetate, VN/124-1 (TOK-001) and TAK-700 in the clinic and in clinical development. Article from the special issue on Targeted Inhibitors.
منابع مشابه
ژنتیک مولکولی، تشخیص، پیشگیری و ژن درمانی در سرطان پروستات: مقاله مروری
The prostate is a small gland located below the bladder and upper part of the urethra. In developed countries prostate cancer is the second common cancer (after skin cancer), and also the second leading cause of cancer death (after lung cancer) among men. The several studies have been shown prostate cancer familial aggregation. The main reason for this aggregation is inheritance included genes....
متن کاملIs the Bench Getting Closer to the Bedside in the War on Cancer? A Quick Look at Prostate Cancer
officially inaugurated in the early seventies by Richard Nixon, research priorities to identify and attack the main weaknesses of tumor cells have evolved, following the rhythm of technology. From the use of overtly toxic and undiscriminating drugs to the detailed annotation of cancers on a patient-to-patient basis through the use of “Omics” approaches, research has struggled in the search for ...
متن کاملAndrogen synthesis inhibitors in the treatment of castration-resistant prostate cancer
Suppression of gonadal testosterone synthesis represents the standard first line therapy for treatment of metastatic prostate cancer. However, in the majority of patients who develop castration-resistant prostate cancer (CRPC), it is possible to detect persistent activation of the androgen receptor (AR) through androgens produced in the adrenal gland or within the tumor itself. Abiraterone acet...
متن کاملThree dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy.
We report here a molecular modeling investigation of steroidal and nonsteroidal inhibitors of human cytochrome P450 17alpha-hydroxylase-17,20-lyase (CYP17). Using the pharmacophore perception technique, we have generated common-feature pharmacophore model(s) to explain the putative binding requirements for two classes of human CYP17 inhibitors. Common chemical features in the steroid and nonste...
متن کاملPI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells
Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of steroid biochemistry and molecular biology
دوره 125 1-2 شماره
صفحات -
تاریخ انتشار 2011